Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Ann Biomed Eng ; 49(12): 3666-3675, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1391896

ABSTRACT

Early in 2020, the pandemic resulted in an enormous demand for personal protective equipment (PPE), which consists of face masks, face shields, respirators, and gowns. At our institution, at the request of hospital administration, the Lifespan 3D Printing Laboratory spearheaded an initiative to produce reusable N95 masks for use in the hospital setting. Through this article, we seek to detail our experience designing and 3D printing an N95 mask, highlighting the most important lessons learned throughout the process. Foremost among these, we were successful in producing a non-commercial N95 alternative mask which could be used in an era when N95 materials were extremely limited in supply. We identified five key lessons related to design software, 3D printed material airtightness, breathability and humidity dispersal, and ability for communication. By sharing our experience and the most valuable lessons we learned through this process, we hope to provide a helpful foundation for future 3D-printed N95 endeavors.


Subject(s)
COVID-19/prevention & control , N95 Respirators , Printing, Three-Dimensional , COVID-19/epidemiology , Equipment Design , Humans , Pandemics
2.
Polymers (Basel) ; 13(4)2021 Feb 18.
Article in English | MEDLINE | ID: covidwho-1119970

ABSTRACT

The production of 3D printed safety protection devices (SPD) requires particular attention to the material selection and to the evaluation of mechanical resistance, biological safety and surface roughness related to the accumulation of bacteria and viruses. We explored the possibility to adopt additive manufacturing technologies for the production of respirator masks, responding to the sudden demand of SPDs caused by the emergency scenario of the pandemic spread of SARS-COV-2. In this study, we developed different prototypes of masks, exclusively applying basic additive manufacturing technologies like fused deposition modeling (FDM) and droplet-based precision extrusion deposition (db-PED) to common food packaging materials. We analyzed the resulting mechanical characteristics, biological safety (cell adhesion and viability), surface roughness and resistance to dissolution, before and after the cleaning and disinfection phases. We showed that masks 3D printed with home-grade printing equipment have similar performances compared to the industrial-grade ones, and furthermore we obtained a perfect face fit by customizing their shape. Finally, we developed novel approaches to the additive manufacturing post-processing phases essential to assure human safety in the production of 3D printed custom medical devices.

SELECTION OF CITATIONS
SEARCH DETAIL